sddec20-19 Automated Team Attendance Tool Final Presentation Fall 2020

Angela Schauer, Brandon Johnson, Nathan Oran, Lance Demers, Connor Sullivan Advisor/Client: Mohamed Selim

Our Team

Connor Sullivan Software Engineering Angela Schauer Software Engineering

Brandon Johnson Electrical Engineering Lance Demers Computer Engineering Nathan Oran Computer Engineering

Team Mail List: sddec20-19@iastate.edu

Project Plan

A high-level overview

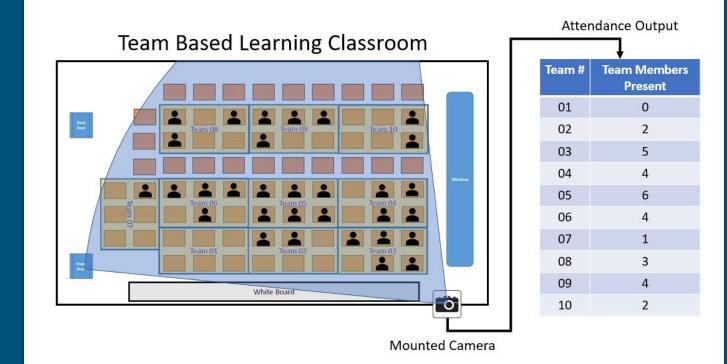
What is Team-Based Learning (TBL)?

Instead of the traditional lecture, students collaborate and learn from each other in addition to the instructor.

Our project is to automate the attendance procedure of Team-Based Learning classrooms to eliminate the time taking attendance during class.

Our solution uses a Raspberry Pi, a Raspberry Pi Camera, and an artificially intelligent computer vision library (Yolov3).

The Problem Statement


- For TBL classes to succeed it is invaluable that all team members show up.
- Taking attendance can take a good portion of class time
- Even with using tools to help speed it up it takes about 2-3 minutes
- Over a whole semester would add up to about one whole class period

Project Plan

A Conceptual Sketch

Functional Requirements

• Hardware Requirements:

- Run on Raspberry Pi
- Use a camera to take clear pictures
- Mounted such that the camera has full visibility of the classroom

• Software Requirements:

- Control and receive pictures from the camera
- Accurately detect the students within the taken picture (required 0% error)
- Determine which teams are missing members
- Consolidate the attendance and send the report to the professor
- Allow the professor the create and adjust multiple seating charts for use in the system

Technical and Non-Technical Constraints

• Technical Constraints

- We were limited by the density which the detection software could work, so we developed a method to break the image into smaller sections to be able to accurately detect the objects we desired.
- With our design we are limited on the placement of the camera since it requires being plugged into an outlet for power.

• Non-Technical Constraints

 COVID limited our ability to gather proper testing data, and properly develop and test our project.

• Non-Functional Requirements

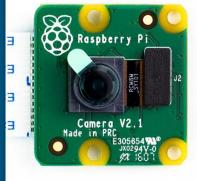
- The tool should be faster than previous attendance methods.
- The tool should be just as accurate as previous attendance methods.

Project Plan

Potential Risks and Mitigation

Risk	Mitigation
Students do not want their picture to be archived or stored	Photos will be deleted from the server once they are no longer needed
	YOLO does not need to be trained to detect an individual's face for the success of our project
An image that is taken does not meet the requirements of being a quality photo	Multiple pictures will be taken throughout the class to ensure accuracy

Resource and Cost Estimates


- \$5

- \$20

• Necessary Components:

- Raspberry Pi Model 4 \$35
- Pi Camera V2 \$30
- MicroSD Card
- Micro USB Charger \$5
- Mount
- Total Cost: \$95

Project Plan

Brandon

Project Milestones

Software

- Student Detection
 - Detect Using Yolov3
- Seating Chart Submission
 - Interface for Professors to enter team-based seating charts and schedule attendance capture time
- Attendance Mapping
 - Determining Attendances and Absences

Hardware

- Raspberry Pi Configuration
 - Network Setup and Dependencies
- Attendance Scheduler
 - Capture the image of the classroom based on the submitted capture time
- System Mount
 - How the system will sit in the classroom
- Email Server
 - Using mutt to send the report to professors

Functional Composition

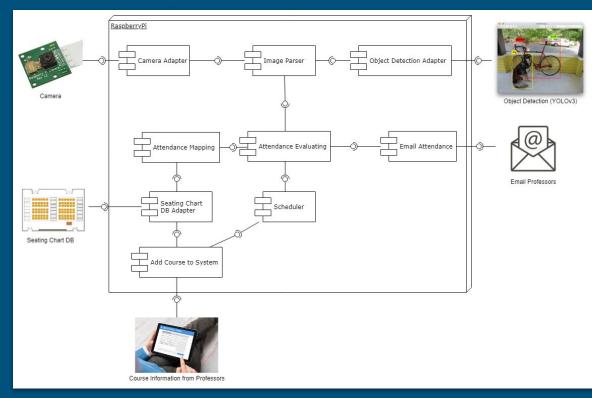
• Attendance Evaluator

• Responsible for processing images into attendance reports

• Scheduler

• Responsible for calling the Attendance Evaluator to run at the proper class times, and sending the reports to the professor

• YOLO v3

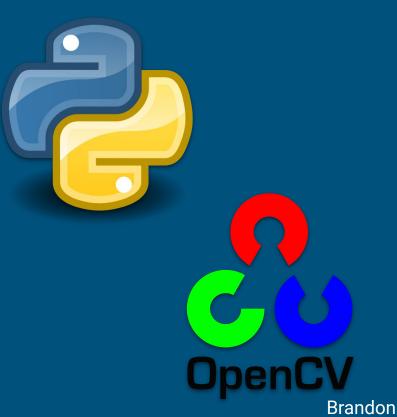

- Object Detection tool of choice
- Camera
 - Raspberry Pi Camera Module V2

• Seating Chart DB

Stores class seating chart information for each class

Component Diagram

System Design


Angela

Mounted System Technologies Used

Pi Environment

- Raspbian Buster
- Python
- OpenCV
- YOLOv3
- Linux CLI
- Bash Shell

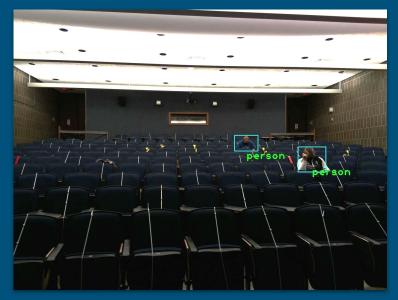
Backend Technology Platforms

Backend

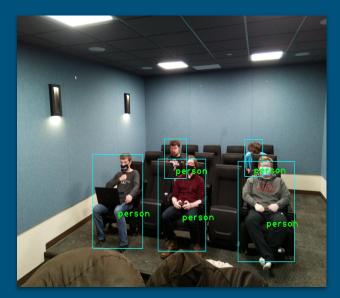
- MySQL Database
 - Table relationships
 - Look-up tables
 - Data storage tables
- ASP.NET Web Application and API
 - C#
 - Entity Framework
 - REST
 - Dependency Injection

Test Plan

• System


- Procure images of the actual classrooms the program would be used in with varying numbers of students in the seats
- Focus on proof of concept with small groups then ramp up difficulty
- Would report accuracy as 100% up to X amount of students/a room Y big

• Backend


• A suite of http requests were created in Postman to test all of our API endpoints to confirm the relationship between the API and Database

Prototype Implementation - YOLOv3

Carver 101 Sample Test Result

Off Campus Sample Test Result

Nathan

Prototype Implementation - Database

• Database Tables Breakdown

- Professor
- Classroom
- Class
- SeatingChart
- Times

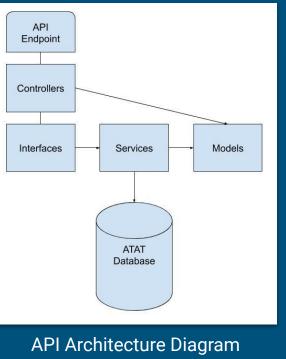
"	Name:	Professo	r			
Column	Datat	ype		PK	NN	Column
o profName	VARC	HAR(50)	\$		0	7 roomN
profEmail <click edit="" to=""></click>	VARC	HAR(50)	0	9		<click td="" to<=""></click>

-	Name:	Classroom					
Column	Datat	уре		PK	NN		
💡 roomName	VARC	HAR(50)	0	2			
<click edit="" to=""></click>			٥				

J	Name:	Class			
Column	Datat	ype		PK	NN
💡 idClass	INT(11	I)	\$		
🔷 nameSection	VARC	HAR(50)	0		•
🚸 classroom	VARC	HAR(50)	\$		•
🔷 profEmail	VARC	HAR(50)	0	\Box	•
<click edit="" to=""></click>			\$		

Name: SeatingChart					
Column	Datatype		PK	NN	
💡 idSeatingChart	INT(11)	0			
seatPosition	VARCHAR(45)	0			
🛇 teamName	VARCHAR(45)	\$			
🛇 classid	INT(11)	0			
🛇 roomName	VARCHAR(45)	\$	\Box		
<click edit="" to=""></click>		0		\Box	

Ţ.	Name: Times			
Column	Datatype		PK	NN
💡 idTimes	INT(10)	\$		0
🔷 time	DATETIME	0		
🔷 day	VARCHAR(45)	\$		
🔷 classid	INT (11)	\$		
<click edit="" to=""></click>		\$		



Prototype Implementation - API

• API Implementation

- DBContext
- Models
- Controllers
- Interfaces
- Services

• Postman Testing

Postman http request set

ATAT Testing 26 requests	
✓ ☐ Professor	000
GET Get Professors	000
POST Post Professor	
GET Get Professor	
PUT Put Professor	
DEL Delete Professor	
> 🗎 Times	
> 🗎 SeatingChart	
> 🗎 Classroom	
> 🗎 Class	

System Design

Nathan

Engineering Standards and Design Practices

• Engineering Standards

• IEEE 802.11

• General industry standards for code

- Comments
- Consistent formatting
- Git Version Control
 - Branching
 - Code Reviews

Conclusion

Contributions of each member

Connor: Raspberry Pi, YOLOv3 – 58 Hours Brandon: Raspberry Pi, YOLOv3 – 51 Hours Angela: Database, API – 67 Hours <u>Lance: Database, API – 56 Hours</u> Nathan: Database, API, Reports – 68.5 Hours All: Initial research and design, testing, presentations

Future Prospect of the project

- Create the seating charts for each classroom with static plot points
- GUI to enter class information
- Algorithm to map data from object detection software to given seating chart
- Scheduler for taking pictures
- Along with TBL classroom attendance AT-AT also has potential application in contact tracing during the pandemic

Questions and Answers

